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Orifice flow at high Knudsen numbers 
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Guggenheim Aeronautical Laboratory, California Institute of Technology, 

Pasadena, California 

(Received 28 November 1960) 

Several interesting features of the flow field in free-molecule flow through an 
orifice are discussed. An estimate is then made of the deviation of the mass flow 
m through the orifice from its limiting free-molecule value rizo for small depar- 
tures from the limit. Using an iteration method proposed by Willis, it is shown 
that this deviation is of the first order in E ,  the inverse Knudsen number, defined 
as the ratio of the radius of the hole to the mean free path in the gas at upstream 
infinity. An estimate of the coefficient is obtained making some reasonable as- 
sumptions about the three-dimensional nature of the flow, and the value so 
derived, giving m = mO( 1 + 0.25e), shows fair agreement with the measurements 
of Liepmann. It appears that ‘nearly ’ free-molecular conditions prevail up to 
E - 1.0. 

1. Introduction 
The flow through an orifice has been investigated recently by Liepmann 

(1961) in considerable detail, especially with a view to understanding the difficult 
problem of the transition from gasdynamic to gaskinetic flow. As pointed out 
by him, the finite geometry, the relative independence from surface interaction 
effects and the already available knowledge (however partial !) of the flow in the 
limiting cases of zero and infinite Reynolds number make the circular orifice 
a highly worthwhile configuration for study. Liepmann’s measurements were 
made through a range of Knudsen numbers which effectively covered the ‘com- 
pressible ’ transition from continuum to free-molecule flow, with the pressure 
ratios across the orifice infinity for all practical purposes. 

The purpose here is to investigate theoretically the flow under nearly free- 
molecular conditions. In terms of an inverse Knudsen number E ,  defined as the 
ratio of the radius R of the orifice to the mean free path A, in the gas far upstream, 
this means that we are interested in flows at  small E .  The free-molecule or gas- 
kinetic limit corresponds to E -+ 0,  and the mass flow rate riz (per unit area) in 
this limit is well known from kinetic theory (Present 1958) to be 

m o  = *p,c,, (1.1) 
where p1 is the density and El the mean molecular speed at  upstream infinity. 
I n  the following, attention will primarily be confined to the mass flow rate k 
at non-zero E ,  as this is the quantity on which measurements are available, 
though all other flow quantities can also be calculated from the results. 

Before proceeding further it seems worthwhile to discuss some features of 
the free-molecule flow itself, and this is done in 5 2. 

24-2 
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2. The free molecule limit 
There is of course a definite flow field associated with even the free-molecule 

limit, and the field of any mean quantity, like density, pressure, etc., can be 
obtained by taking the appropriate moment of the molecular distribution func- 
tion. Thus, iffO(v) denotes the distribution (the superscript 0 will always refer to 
free-molecule conditions), the corresponding density, ‘gas ’ velocity, temperature 
and pressure, for instance, are given respectively by 

po = mno = m fO(v)Dv, 

no ! 
p$  = - m  cicjfo(v) Dv, s 

where m is the mass of a molecule, v its velocity and c = v - u the ‘peculiar’ 
velocity; W is the gas constant and Dv is an element of volume in v-space. 

The function f o  is obtained from the consideration that in the free-molecule 
limit there are no inter-molecular collisions. As the pressure ratio across the 
orifice pl/p2 tends to infinity, there will thus be no molecules travelling upstream 
across the orifice at all, and the distribution function at a point like P(x)  (see 
figure 1) will be Maxwellian everywhere in velocity space except in the ‘vacant 
cone’ C, which is the backward cone subtended by the orifice at P. The Maxwel- 
lian part corresponds of course to conditions at upstream infinity; thus (with 
subscript 1 denoting these conditions) we have 

fo(v) = 0 in C 

= n, (2)’ e-piv2 everywhere else. 

The functionfo is similar downstream of the orifice too, except that now C is the 
major part of velocity space, and the backward cone is a ‘full’ Maxwellian. All 
across the orifice the cone becomes a half-space, and hencefo and all the mean 
quantities are constant. 

The number density is relatively easy to calculate, being given (in non- 
dimensional form) by 

where Q(x), the solid angle subtended by the orifice at x, is 
Q = /02=zdq5j-R R‘dR‘ 

o (v2 + z2 - 27 cos q5B’ + R’2)$ ’ 
writing 7 for the cylindrical radius at x. 
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The evaluation of this integral is fairly straightforward but somewhat tedious, 
and leads to the expression 

_ -  ' - ${~,(a, ,  a2) - cos a, sin a2~,(a1)) ,  
4rl 

where A, is Heuman's lambda function and QrlP,(a,) is the complete elliptic inte- 
gral of the first kind, K (sina,). Heuman (1941) has discussed the properties of 

I Infinite sheet Orifice 
I 

FIGURE 1. Diagram explaining notation. 

the function A,, and has also tabulated both A, and Po. The arguments al, a2 
are given, in terms of polar co-ordinates (r,  8) from the centre of the orifice, by 

(Distances have all been non-dimensionalized by dividing by R.) A relation 
corresponding to (2 .5 )  has been derived by Sadowsky & Sternberg (1950) for 
the stream function of a source ring. 

The density field calculated from (2 .4)  and (2 .5 )  has been plotted in figure 2 
for the region upstream of the orifice. The field downstream is obtained easily 
by making use of the symmetry 

N ( Y ,  n - e)  = 1 - N(r ,  o), (2 .6 )  

which follows from the nature of f0 discussed before. In the plane of the orifice 
i2 = 2n, so N = 4. On the axis a1 = 0 and tan a2 = - r ,  and (2 .5 )  reduces to ' 

- = +( 1 -sin a2); 4n 

hence 

if 2 a  is the included angle at the vertex of C. 
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The gas velocity can similarly be expressed as 

This integral unfortunately turns out to be too complicated to express ana- 
lytically, and we must at present content ourselves with calculating i t  along 
8 = 0 and 90°. Along the axis we can show quite easily that 

across the orifice Uis constant and equal to - &(O) = I /  4.. (or uo = -- uE(0) = ?&). 
However, it is not difficult to guess the qualititative behaviour of U for other 
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FIGURE 2. N is antisymmetric about r = 0, N = Q. Full lines show exact results and 
dashed lines represent rough estimates. 

values of 0, using N as a guide. It is interesting to note that we can immediately 
obtain the free-molecule mass flow from the mean field as 

mo = PO( - u;) = (&pl) (&) = 

A little thought shows that U ,  like N ,  is antisymmetric about the orifice and has 
the value U(r,  7~ - 8)  = 27~-9 - U(r, 8). 

Thus, far downstream the gas velocity is finite and tends to E l ,  but the density 
of course drops off to zero. It should be noticed that though the velocity field is 
antisymmetric about the plane z = 0 the stream line pattern will be perfectly 
symmetric as it depends only on the geometry of the cone C .  

(2.10) 
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The temperature field is obtained from the relation 9?!TO(x) = +c" = Q(2 - u2). 

But 

hence ~?!T'(X) = WT1- Q u ~ ( x ) ,  

01 (2.11) 
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FIGURE 3. U is antisymmetric about r = 0, U = n-i. Full lines show exact results 
and dmhd lines represent rough estimates 

Thus the temperature is very simply related to the velocity. It drops slightly 
from Tl to (1 - 2/(3n)) Tl = 0.7879T1 at the orifice and then sharply decreases to 
T2 = (1 - 8/(3n)} Tl = 0.1512T1 far downstream. Along the axis, we get from (2.9) 

From (2.1) the pressure tensor can be written as 

p f j  = -pO("i-u"Z"j. 

The thermodynamic pressure p = +pii can of course be obtained from the 
equation of state p = p 9 T ;  some of the other components can also be easily 
evaluated but the results will not be quoted here. 

The quantities N ,  B, U and U,. (the radial component of U which will turn out 
to be of interest later) are plotted in figures 2 and 3. As an illustration of the kind 
of flow pattern to be expected in free-molecule flow the streandines have been 
worked out for a slit and are shown in figure 4. The calculations here are exactly 
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the same as for a circular orifice but have the advantage that they lead to closed 
expressions for all quantities; in particular 

N = N(r ,8 )  = l-a/n-, 
U = U(r, 0) = sina/2z/n(l -a/,/n-), 

where 2a = tan-l(2r cos O/(r2 - l)} is again the included angle at  P. The tempera- 
ture is still given by (2.11). It can be easily shown that the vector U bisects the 
angle 201 at P, and this suggests an obvious geometric construction for drawing 

FIUURE 4. Streamlines in free-molecule flow through a slit. The pattern is symmetric 
about the plane of the slit and the centre-line. 

the streamlines. As remarked earlier the streamlines are symmetric about the 
plane of the orifice. The effect of the wall in slowing down the flow is quite 
impressive. 

One might make a few remarks here on the general validity of the above picture 
when the flow takes place from onefinite reservoir into another. Conditions up- 
stream are obviously not going to be affected too much if the linear size of the 
reservoir is sufficiently large compared to the orifice diameter and the mean free 
path. Downstream of the orifice, however, the presence of a wall tends to bring 
the gas temperature back to T,, while we saw above that the temperature T, 
in the case of an infinite reservoir is much less than T,. Thus heat transfer at the 
walls becomes important, and the mean field will presumably be rather dif- 
ferent from the one discussed here. The point has been discussed by Liepmann 
(1961), and we will return to it briefly later. 

3. The nearly free-molecule flow 
For small departures from the free-molecule limit we can obtain the true dis- 

tribution function f by perturbingfo. This function f is governed by Boltzmann’s 
equation, which for the steady flow of a monatomic gas (the only one we 
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consider here) in the absence of any external forces is (Chapman &, Cowling - 

1952) 

= S(f) -f-EP(f). (3.1) 

Here g denotes the relative velocity between two molecules which have initial 
velocities v, w and final velocities vr, wr, and I the differential cross-section for 
scattering into the solid angle dQ. For convenience we denote the integral 
operators by 9 and 9, the 'gain' and 'loss' operators on f. 

To tackle the Boltzmann equation directly seems a rather hopeless task; 
we obtain here an approximate solutionfl for small B by an iteration procedure 
suggested by Willis (1958) in which we replace 3'(f) and 9(f) by g(j0) and 
9 ( f o )  and write 

v.- afl(v, - - g(p) - f ' 9 ( f O ) ,  ax 

or, considering flow upstream of the orifice as shown in figure 1, 

This is an ordinary differential equation with v = - v t  as a parameter, for each 
value of which we require a solution of (3.2). (Note that r,  at this stage, is not 
measured from the centre.) The solution of the equation, using the boundary 
condition that f = fl at r = GO, is 

As -EP(f)/v is like 1/A, the first term obviously vanishes for any finite r,  leaving 

It is hoped, of course, that this first iterate gives a good approximation to 
the true perturbation. Incidentally (3.4) has an immediate and obvious physical 
interpretation, and could almost have been written down straightaway; for 
9 ( f 0 ) / v  is the number of molecules which, after collision in unit distance, are 
travelling with velocity v, and the exponential multiplying it is the probability 
of such molecules reaching the orifice ( r  = 0). 

The simplest molecular model we can use is the one due to Krook (Bhatnagar, 
Gross & Krook 1954, Krook 1959), namely, 

(3.5) 1 9 ( p )  = AnO, 
g(j0) = A (no12 (,@/n-)% exp{ - $(v - UO)~},  

where no, uo and Po are d l  given by (2.1). We choose A here to be a constant equal 
to El/nlAl so that the number of collisions (per unit volume and unit time) when 
the distribution is completely Maxwellian, namely +(n,El/Al), agrees with the 
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number given by Krook's model, which is ~A(TLO)~ .  Making these substitutions in 
(3.4) and introducing 

and other non-dimensional quantities already used in 0 2, we get 
v JP1 = V, E I J T I  = 8' 

fl(v, r = 0) = fl 2e' ~ 2 ~ 8  exp {VZ - B(V - U)2} exp 1 - - 1: 2 ~ ( r )  art) f . 
(3.6) 

In  principle this integral can now be evaluated for each velocity vector V at 
each point in the plane of the orifice, for all the quantities in the integrand refer 
to free-molecule flow and can be calculated as in 9 2. 

However the explicit and analytical calculation of the integral is rather diffi- 
cult. But we can still get a good estimate of the result by making a few simple 
approximations. First we assume that the flow is uniform across the orifice: 
this is strictly true in free-molecule flow, and should be a good approximation in 
nearly free-molecule flow too. This means that we evaluate the integral at the 
centre of the orifice, and assume it is the same all across it. 

We also notice, from figures 2 and 3 and from the discussion in 0 1, that the 
values N ,  B and U-but not of U,, which appears in (V - U)2 in (3.6)-at r = 0 
and co are independent of 8, though their variation in between is a function of 
8. It is obvious, therefore, that the integral in (3.6) is similar for all rays, though 
its actual numerical value will vary somewhat. We shall in fact make use of this 
feature in what follows. 

Sum 

It is convenient for purposes of analysis to rewrite (3.6) as 

where gl(r) = i V B t e - B U ' ,  
g2(r, V )  = exp { - 2BUT V + (1 - B)  V2}  

(3.8) i = exp {h,(r) V + h2(r) V2) ,  

H ( r ,  V ; d )  = exp -- 2N(r')dr - exp --h(r) 1 11 - 1 Z ).I 
It is particularly instructive to work out the integral in (3.7) along the axis, 
8 = 0, where N ,  B, U and U, ( = - U )  are all analytically known from (2.7), (2.9) 
and (2 .12);  also 

We have therefore 
h(z) = j 0 2 2 ~ ( z ) a z =  z+,/(z2+1)-1. (3.9) 

az 
f 1 (  - V l , z  = 0) = f l2d g1(x)g,(z, V ) H ( z ,  V , € ' ) T .  (3.10) 

We want the lowest order term in d from this expression. Now it is shown in 
Appendix I1 that the integral for the mass flow (or, for that matter, any moment 
off l) can be split in a way which corresponds exactly to splitting the distribution 
function in (3.10) as follows: 

lom 

(3.11) 
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The error committed in this splitting is o(E'); the lowest order term in E' turns 
out to be O(E') and (3.11) reduces, correct to O(E'), to 

f'( - v4,z = 0) = fl{ 1 +$ [: +IOW (g,q, - 1) dz])  ( 3 . 1 1 ~ )  

using the integral evaluated in Appendix I. We expand g, as a series in V ,  
obtaining 

9, = 1 +  Vh,+ V2(h,2/2!+h2)+ V3(h?/3!+h1h2)+ v4(h:/4!+h,2h2/2+h~/2)+ .... 

Thus we can write (3.12) 

where 
n=O 

A , =  k+/om(gl-l)dz, A ,  =/omg,h,dz, A,=~oW(qlh2/2!+g,h,)dz ,.... 
(3.13) 

From arguments given previously we expect the distribution function to look 
similar on other rays, so we may assume 

f ( V , r  = 0) =f, l+-$(V) * (3.14) 

Looking at (3.6), (3.7) and (3.8) again, and surmising the variation of the inte- 
grand with 8 from figures 2 and 3, we see (as remarked earlier) that N ,  B and U 
vary between the same limits at r = 0 and r = co for all 8, and so the effect on 

the integral of their being functions of 8 must be small. For instance 

/,={1 - N(r) )dr  is exactly the same for 8 = 0 and 8 = 90". The predominant effect 

of the dependence on 8 of the integral appears through V,, which varies quite 
widely with 8. Near the origin we obviously have V,  = V,(z = r )  cos 8 as I V,l N U .  
For r $ 1 it can be easily shown from (2.8) that 

{ ?  1 

) 
( 

but !2 N n cos 8/r2,  so again U, N U,(z = r )  cos 8. Thus, it is a very good approxima- 
tion to take (3.15) 

Next we notice that h, accounts for a relatively small contribution to the final 
answer in comparison with h, (h, varies from about - 0.27 to zero as r goes from 
0 to co, and appears only in V2 and higher order terms); hence it appears that, 
approximately, the coefficients of Vn in (3.13) are multiplied by corresponding 
powers of cos 8 on other rays. We can therefore take 

$(v) 2: $,(VcOse), (3.16) 

which also amounts to putting g,(r, V )  = g2(z, Vcos8). Using this in (3.14) we 
get the final result 

Ur(r, 8 )  N V,(Z = r )  cos8. 

(3.17) 



380 Roddam Narasimha 

Results 
The coefficients A ,  have been calculated numerically for n = 0 to 5, and have the 
following values : 

A,  = -0.3944, 
A,  = + 0.0502, 

A ,  = f0.7549, 
A, = - 0.0045, A ,  = - 0.0013. 

The mass flow through the orifice is easily obtained as 

riz = m ( - v,)f(v) Dv. s 
Substituting from (3.17) we get 

(3.19) 

(3.20) 

Using the values of A ,  given by (3.18) we get? 

4P1 3 1  1( + 0*25s)* (3.21) 

The coefficient 0.25 obtained here is somewhat less than the value 0.26 given in 
a preliminary report (Narasimha 1960) where the calculations were based on an 
assumption slightly different from the one used here in (3.16), namely 

@(V) -= $(V)/V = @o(Vcoss),  (3.22) 

and h, was ignored. The approximation (3.16) is somewhat more consistent, but 
apparently the result obtained is not significantly different. No claim of great 
accuracy is made for the coefficient; nor indeed would it be justified, considering 
the approximate nature of the calculations. 

Correction for backlflow 
The backflow through the orifice is nil under free molecule conditions, but one 
may in general expect some backflow when E is finite, even though the pressure 
ratio p,/p2 is still infinite. Using exactly the same procedure as before, one can 
write down the distribution function for molecules travelling upstream as 

dx f ' (  V 5 , z  = 0) = f12d g,(z) g,(z, V )  H(2,  V ;  s') - r V 
where g,,g, and Hare  still given by (3.8), but of course one now has to use the 
downstream field of N ,  B and U, obtained as shown in $2. Both h, and h2 are then 
negative, and h(z) -+ 1 as z-f - co. By repeating the analysis made for the up- 
stream integral one concludes that the highest order term in fl( 72, z = 0) is 
O(s'), and given by 

f'( VO, 2 = 0) = f, 2s' 

t I have to thank Dr Willis for pointing out a numerical mistake at this point in an 
earlier draft. 
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The approximation (3.16) for the radial component U, is now rather crude, but 
conservative in the sense that it overestimates the backflow. The correction to 
the coefficient (3.21) can again be pressed as 

where 

A’ n + l  a’ = 4 x 2  (T)! 
n + 2  

-4; = j;mgldz, A ;  = j;mglhldz, A;; = f g + g 1 h 2 )  dz, .... 

The coefficients alternate in sign, and using the Euler-Maclaurin technique one 
arrives at an upper bound of - 0.03 for a’, i.e. the coefficient in (3.21) would be 
reduced at most to 0.22 by backflow. 

RIA1 
0.01 

I 1 K) 

FIGURE 5. Comparison of theory with experimental data. Liepmann’s measurements : 
0 ,  argon; 0, helium; 0, nitrogen. -, values calculated with pl = +pl~,Al. 

Comparison with experiment 
Figure 5 shows the experimental data of Liepmann, and also the result (3.21),  
which has been plotted assuming that the viscosity ,ul = +plClhl. The backflow 
correction has not been included first because it is small and would not make 
much difference; secondly, because its exact value is rather uncertain in the case 
of flow into a finite reservoir, where the flow field is affected somewhat by the 
presence of walls as discussed in 9 2. 

Figure 5 shows reasonable agreement between theory and experiment (notice 
that a small backflow correction would make the agreement even better), 
and it seems safe to conclude that: (i) the prediction of the theory that the depar- 
ture from free-molecule flow is linear in 8 with a coefficient of the order of 0.25 



3 82 Roddam Narasimha 

is borne out by the experiments; and (ii) 'nearly ' free-molecule conditions prevail 
up to s - 1.0. 

This work has been supported by the Office of Naval Research, contract 
no. N-onr220-21 Task21. I am grateful to Dr H. W. Liepmann and Dr J. D. 
Cole for discussing the problem with me and for their enthusiastic encourage- 
ment. I also want to thank Mrs Dorothy Diamond for making most of the 
computations. 

Appendix I 
We evaluate here an integral which we will need, namely: 

This transforms, using 6 = c+ J(a2 + cz), dc/dg = (52+  a2)/2F, to 

Integrating successively by parts, we can reduce this to 

X(a) = +{( 1 +a)  e+ - a2Ei(a)}, 

where Ei(a) is the exponential integral, with the following expansion for small a 
(Bromwich, 1926): Ei(a) = - 0.5772 . . . -In a + a + . . . . 
Thus x for small a is 

X(a) = Q+O(a21na) = x(o)+o(a). 

Appendix II 
From the discussion which led to (3.16) it was concluded that 

g2(r, V )  = 92(z, Vcos8), 

and that a good approximation to the distribution function is 

dz 
V .  fl(V, r = 0) = fl 2s' gl(x) g2(z ,  V cos 8) H ( z ,  V ;  e') - (A-2) 

Hence the mass flow, expressed,as an integral, is (from 3.19) 

(A-3) 
Consider fist the integrations with respect to z and V .  Putting 

we write 
g1(z)g2(~, VCOSO) = G(z, VCOSO), 

J(s')  = E'//V~B~'(G-I)HIZZ~V+EI V2e-"'HdxdV = J1(e')+J2(e'), (A-4) 
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the reason for the splitting being that (G - 1) is integrable in z. We want to extract 
from J(E‘)  the lowest order terms in 8’. 

First writing H = exp(- ( d / V )  h(z)}, where h(z) = z +J(z2 + 1) - 1, > 0 for all 
x > 0, 

J&’) = 8’ 1::: /lo V2e-V’ (G - 1) exp ( -  6) h ( 4  dzdV  

V2e-VB(G-l)exp [ - 6) h(z)) d z d V .  
V=b z=o 

Replacing ( G -  1) by an upper bound and using (A-1), we see that the f i s t  term 
on the right is of order E ’ ( & ~ / E ’ ) .  In the second term the coefficient in front of 
h(z) is s‘/V < d / S .  So if we can choose S ( d )  such that S4/d -+ 0 and E‘/S + 0 as 
E’ -+ 0, which is true whenever 6 = dm, < m < 1, we can write 

~ ~ ( 8 ’ )  = Erfomjom V ~ ~ - V Z ( G -  l)dzd~+O(e’). 

Similarly 

x/omexp( -6) [ z+~(z2+1)1 ]  e) V ~ V .  

Using the result (A-1) again 

It is clear that we can choose 6 such that both 64 and d2/a2 are o(E’) by taking 
6 = dm, ;P < m < 8. Thus 

J2(E’) = 1 + +J?rs’ +O(E’).  

Putting these results in (A-3) 

which, after expanding g, = exp(h, V + h, V 2 )  as before, leads to  exactly the same 
result as (3.20), thus justifying the splitting of the integral used in (3.11) and 
(3.1 1 u). 

A similar analysis will show that (3.11) and (3.11 a) give correct results for all 
higher moments also. 
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